THIS DOCUMENT IS FOR MAINTENANCE PURPOSES ONLY AND IS NOT RECOMMENDED FOR NEW DESIGNS

DS 3292 -1

SP8716/8/9 520MHz LOW CURRENT TWO-MODULUS DIVIDERS

SP8716 \div 40/41, SP8718 \div 64/65, SP8719 \div 80/81 are 50mW programmable dividers with a maximum specified operating frequency of 520MHz over the temperature range -40 °C to + 85 °C.

The signal (clock) inputs are biased internally and require to be capacitor coupled. The output stage is of an unusual low power design featuring dynamic pull-up, and optimised for driving CMOS. The 0 to 1 output edge should be used to give the best loop delay performance.

FEATURES

DC to 520MHz Operation

- -40°C to +85°C Temperature Range
- Control Inputs and Outputs are CMOS Compatible

QUICK REFERENCE DATA

Supply Voltage 5.0V ± 0.25V

Supply Current 10.5mA typ.

Figure : 1 Pin connections - top view

ABSOLUTE MAXIMUM RATINGS

Supply voltage pin 2 or 8):	8V
Storage temperature range:	-55°C to +150°C
Max. Junction temperature:	+175°C
Max. clock I/P voltage:	2.5V p-p

Figure 2 : Functional diagram

SP8716/8/9

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):]

Supply voltage: Vcc = +4/95 to 5.45V, Temperature: Tamb = -40°C to +85°C

		Value		Units		
Characteristics	Symbol	Min.	Max.		Conditions	Notes
Max. frequency	fmax	520		MHz	Input 100-280mV p-p	1
Min. frequency (sinewave input)	fmin		30	MHz	Input 400-800mV p-p	2
Power supply current	lcc		11.9	mA	C∟ = 3pF; pins 2, 8 linked	1
Output high voltage	Vон	(Vcc - 1.2)		V	I∟ = -0.2mA	1
Output low voltage	Vol		1	V	I∟ = 0.2mA	1
Control input high voltage	Vinh	3.3	8	V	÷Р	1
Control input low voltage	VINL	0	1.7	V	÷P +1	1
Control input high current	Vinh		0.41	mA	VINH = 8V	1
Control input low current	VINL	-0.20		mA	$V_{INL} = 0V$	1
Clock to output delay	tp		28	ns	C∟ = 10pF	2
Set-up time	ts	10		ns	C∟ = 10pF	2
Release time	tr	10		ns	C∟ = 10pF	2

NOTES

1. Tested at 25°C only

2. Guaranteed but not tested

Figure 3 : Timing diagram

OPERATING NOTES

1. The inputs are biased internally and coupled to a signal source with suitable capacitors.

2. If no signal is present the devices will self-oscillate. If this is undesirable it may be prevented by connecting a 15k resistor from one input to pin 4 (ground). This will reduce the sensitivity.

3. The circuits will operate down to DC but slew rate must be better than 100V/,us.

4. The output stage is of an unusual design and is intended to interface with CMOS. External pull-up resistors or circuits must not be used.

5. This device is NOT suitable for driving TTL or its derivatives.

Figure 5: Toggle frequency test circuit

Figure 6 : Typical input impedance